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The problem of conjugate unsteady convective and radiative heat
transferfrom a solid spherical particle is numerically investigated for
Reynolds numbers up to 100 using a Chebyshev-lLegendre spectral
method. The treatment of nonlinear boundary condition of the radia-
tion heat transfer from the sphere surface is assessed and success-
fully implemented. This work is an extension of the previous effort
of simulating flow around a sphere using spectrai method to include
heat transfer. The assumption of guasi-steady flow field for the
unsteady heat transfer calculation is compared with the fully tran-
sient treatment of both the flow and the temperature fields. It is
found that the quasi-steady assumption underestimates the overall
heat transfer rate at very earfy time stages (up to 9% underestima-
tion for the mean Nusselt number), However, the discrepancy be-
comes smaller as time elapses. The underprediction of the guasi-
steady assumption becomes larger as the Reynolds number in-
creases for a fixed Prandtl number. The results for different alternate
radiation—-conduction number cases are presented. 1994 Aca-
demic Press, Inc.

1. INTRODUCTION

There has been a constant need for research into the fluid flow
and heat transfer about a rigid sphere because of its extensive
applications [1]. Both experimental and theoretical studies have
been conducted to examine the various effects of a spherical
particle exposed to a convective environment. On the theoretical
side, several numerical models with varying levels of complex-
ity have been constructed to address various tssues of thermai
transport associated with a spherical particle. One of the ap-
proaches uses a quasi-steady model where momenturm transport
is assumed to be a steady process, while heat transfer is consid-
ered to be transient [1]. However, the transient behavior of
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the sphere predicted by this approach becomes questionable,
especially in an early time stage. Tt is well known that for a4 small
Prandtl number momentum transfer takes longer to establish a
steady state boundary layer near a solid surface than does heat
transfer. A recent study of Nguyen and Chung [2] shows that
the flow field of a compulsively started sphere reaches steady
state after 15 units of dimensionless time (=R/U.., where R
is the sphere radius and L, is the free stream velocity) for
Reynolds numbers in the range lower than 100. From the time
the sphere is exposed to a convective environment, the flow
structure changes continuously from a creeping-like flow to a
fully developed boundary-layer-type flow [3]. Because of these
transient phenomena, the flow and temperature fields obtained
by using a quasi-steady hypothesis may deviate from those
obtained by fully transient treatment. In order to guantify the
difference between the quasi-steady results and fully transient
results, it is necessary to solve the momentum and energy
conservation equations in a fuily transient manner. Another
assumption frequently used for analyzing the flow over a sphere
is that the sphere has a uniform temperature such that no temper-
ature gradient exists within the body of the sphere. Unless the
sphere thermal conductivity is small compared to that of the
fluid, this assumption is valid since the sphere will adjust rather
quickly to thermal changes of the environment.

The present study is based on the transient, conjugate ap-
proach which treats both exterior and interior domains sepa-
rately in such a way that the temperature and the heat flux of
the two domains match at the interface. A fully transient and
conjugate model in conjunction with a Chebyshev-Legendre
spectral numerical scheme used for the flow simulation [2]
is developed to establish a methodological basis upon which
extensive evaluation of the two approaches described above
is conducted. In addition, a numerical experiment using the
influence matrix technique for a nonlinear boundary value prob-
fern is performed. Influence matrix technique has been success-
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FIG. 1.  Schematic of the coordinate system.

fully applied to decomposing the stream function and vorticity
for the Navier-Stokes equation [2]. This technique is extended
to treat a nonlinear boundary condition such as that encountered
in thermal radiation. Results based on the quasi-steady assump-
tion are compared with those obtained by simultangous treat-
ment of the unsteady momentum and energy conservation equa-
tions,

2. MATHEMATICAL FORMULATION

2.1. Problem Statement

Figure 1 illustrates the physical configuration and geometry
under consideration in the spherical coordinates system [(r, 8)
with the origin taken to be at the center of the sphere. As
depicted, a rigid particle, assumed to be spherical in shape, of
radius R and at temperature T, is exposed to an unbounded
incompressible fluid at temperature T.. At the time of exposure
(r = (), the motion of the outside fluid is suddenly started
in an impulsive fashion such that the flow is instantaneously
accelerated from rest to U, going from left to right. For the
systems considered here, the temperature is assumed to be low
enough that thermal radiation is neglected, and therefore the
present analysis precludes high temperature systems such as
those in thermal plasma processing, combustion, etc. Within
this temperature range, the thermophysical properties are ap-
proximately constant and will be assumed valid in this study,
Also, it is assumed that the flow and temperature fields are
axisymmetric so that no azimuthal variation exists in any depen-
dent variable.

2.2. Governing Equations

For the scenario described in the preceding subsection to-
gether with the outlined assumptions, the thermal phenomena
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may be described by a set of equations representing mass,
momentum, and energy conservation. In streamfunction~vor-
ticity formulations, the mass and momentum equations may be
cast in nondimensional form as

1oV, Qirsing) 2 |

EQrsin® (1)
E*¥Fr = —Qrsin 6, 2)

where t and r are time and radial coordinates nondimension-
alized as t = time X {/./2R. r = radial length/R. R and U,
are the radius of the sphere and free stream velocity, respec-
tively. Re is the Reynolds number based on the sphere’s diame-
ter and the free-stream velocity, and {2 and W are the dependent
quantities representing vorticity and stream function in respec-
tive order, o , Ya( . } is the conventional notation of the
Jacobean. The operator £° employed in Egs. (1) and (2) is
defined as

7
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sin @ A 1 o
Er= + ——=. 3
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The energy conservation equation outside the sphere without
internal heat generation is written in nondimensional form as

oz [0z, Ueoz| 2wz 207
dt ar r of Pel ar  ror

o9 0z
+ _ ay 9._
sin 630 (“” aa)]’

where Pe is the Peclet number. U/, and {/, arc the r and
f-direction velocity components defined in terms of the stream

(4}

function as
1 (A A 4
Ul s Ut = p VYR N
{ ot rsmﬁ{r a6 dr} %)
and Z is the dimensionless temperature defined as
P T—-Ta 6)
ST - T

where T. and T, ar the free stream and initial sphere surface
temperatures, respectively.

The conjugate problem takes into account the finite conduc-
tivity of the spherical particle. Since the sphere is solid, the
energy transport of the interior may be modeled by a heat
conduction equation written in dimensionless form as

$Z _ 2|9z 202 I a7z
— =t =t 5=——lsinf— || 7
dt Pe l:ar' rdr  risinéddé (sm 69)] )




TRANSIENT CONJUGATED HEAT TRANSFER ANALYSIS

where Pe is the Peclet number based on thermal diffusivity of
the solid sphere and it represents a2 measure of the outside
convection to the inside conduction. The dimensionless temper-
awre Z is defined as in Eq. (6) except that T is replaced by 7.
The superscript * indicates the interior of the sphere.

2.3. Initial Conditions

The sphere is assumed to be at a uniform temperature at
1 = 0. The thermophysical properties of the fluid and the sphere
are assumed to be uniform initially and stay that way all the
time. The flow is initially at rest at uniform temperatures. The
mathematical representation of the above stated assumptions
cuan be written ag

YO, r, =000, r ) =0.200, 1, )= 0, 20, r, B = 1.
(8)

24. Flow Boundary Conditions

The flow field’s boundary conditions are the same as those
in our previous work [2]. The flow field is assumed to be
undisturbed by the presence of the sphere at a distance far from
the sphere and the relative velocity between the fluid and the
sphere is set to be zero at the sphere surtface. These conditions,
when imposed on the stream function and vorticity, amount to
the coustraints

Vi r, =0, Ve, r,m) =0V 1, =0 (9

Wr0=0.  Qro et~ [ P dun
or m

(10)
(11

O, r,0) =0, Q@ r,m) =0,

where £\(u) is the first-order Legendre polynomial,

2.5, Temperature Boundary Conditions

In this study. we prescribed two different boundary condi-
tions. The one considers the conduction heat transfer dominant
case at the sphere surface. For this case the heat flux and
temperature continuity boundary conditions can be expressed as

Az 1, 8) _ 91,0
or ar

20 1.6 =21, 8).

(12)

K

(13)

where D, is the ratio between the sphere and the fluid thermal
conductivities {1.e., = &/x where & 15 the sphere thermal con-
ductivity and « is the fluid thermal conductivity). In order to
investigate the case of a nonlinear boundary condition, the other
boundary condition we consider is that in which the conduction
heat transfer balances with the sphere surface radiation energy
transfer. In this case, the sphere is assumed to radiate the encrgy
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to the environment at temperature T... In this case the hear flux
boundary condition can be written as

o 20 1.8 971, 6)
* ar ar

- N1 =1 — @2, 1, OF,
(14

where @, (=Ty/T..) is the ratio of the initial temperature of
the sphere 1o the far field temperature. and N, is the altemate
radiation—conduction number defined as

RT

N =cg———.
K(Ty— T.)

(15)

Here & is the surface emissivity and o is the Stefan—Boltzmann
constant. When the radiation heat flux is considered, the temper-
ature continuity condition at the sufface (i.e., Eq. (13)) is used
with Eq. (15).

3. NUMERICAL METHOD

Following the previous paper [2], the full spectral method
adopted in this gtudy uses Chebyshev and Legendre polynomi-
als as basis functions for series expansions in the radial and
anpular directions respectively. The detailed spectral formula-
tion for stream function and vorticity has been given in a
previous study [2], and will not be discussed further here. We
will focus on the spectral formulation of the energy conserva-
tion equation.

3.1. Spectral Representation of the Governing Equations

The calculation domain is divided into two concentric spheres
for which inner and cuter domains represent the solid and the
continuous phases respectively. The radial direction is made
finite by projecting the outer region of the solid sphere, initially
infinite, into a spherical shell whose normal distance between
the two concentric spheres Is further rescaled onto a new vari-
able 7 € [—1, 1]. This coordinate transformation is obtained
by the use of an exponential mapping, which results in dense
collocation points near the sphere surface where the velocity
and temperature gradients are expecled to be large. The inner
region of the solid sphere is also transformed into a new variable
£e [—1. I]. To be specific, this study uses the coordinate trans-
formation

n=l———2—]og,,r r>i
e (16)
£=2r—1 r<1

]

where 7., is a parameter large enough that the flow and tempera-
ture at any point with radius greater than exp(1n..) would behave
like the free stream. The angular coordinate is mapped into a



426

new variable g = cos 4, so that we can expand the temperatures
as a series of Legendre and associated Legendre polynomi-
als; ie.,

{(Zr, & ), Z(s. m, )} = E {Z.(t, 6. Z,, MP(w), (1T

n={}

where P, (u) is the Legendre polynomial of order n, P)u) is
the associated Legendre polynomial of the first kind, and NL
is the number of Legendre polynomials. By substituting Eq.
(17) into Egs. (4) and (7), and after considerable algebraic
manipulation, the energy conservation equations for the ounter
and inner domains of the sphere become

A2, _ 2| 4 FL 247,

—— =" s ———nn+ 1)Z, |+ 8 (18)
ar Pe = &7 7= 07

4z, 7. az, + 1) -

__:78_ in 2 94, nln l? (19)
ar  Pa | & 1+ EIE (1 + &Y

where §, is the convection term which is written in spectral
form as

NL NL
S, = g3 nmxml N E [.},u (\p — ii?.’)

1()1
2 O‘Z]
e 37

Here v} and AY are constants representing the integrals of three
associated Legendre functions and may be shown to be given by

X =2 +1( " ’)( " f')
=@ D 0 olle 0 0

yi=— JU+ D ”2<n i j)(n i j)
Q"'F')[ni+|)] o1 —i/\0 0 o)
where (! = »

m m, ) A€ the 3-J symbols. Rottenberg er al. [4] pre-
sented the theory expressing these symbols, and devised algo-
rithms to compute therm numerically.

Up to this point, £qs. {18)—(20) are only partialiy spectral.
In order o fully apply the spectral method to Egs. (18) and
(193, a series of Chebyshev polynomials is used to expand
the temperatures in the remaining direction, By selecting the
collocation points to be cos(in/NT), where NT is the total
number of collocation points, the solution becomes exact at
those collocation points. The resulting expressions are writ-
ten as

+ AL =

(21}
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dZnA | ) ( 4 el 2 2, (I})
— = amtimmn, -G, —— G
a € [:Zu o g M
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82‘ NTi ( ) -
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Lo~ Lt | (23)
g

where NT, is the number of collocation points for the inner
region of the sphere and §,; becomes

NL NL

Sy = eI z 2 [’)’,, (
I
N A
+ X ﬂf,‘g Z) G Z,-,],

NT
2 )

* T E G, ‘pﬂ
= 150

l24)

where Z,, and 2,,; refer to the nth component at the points 7
and &, respectively. Equations (22) and (23) are a system of
mixed algebraic and differential equations which can be solved
by various methods for initial value problems.

3.2, Temporal Discretization

The predictor—corrector and the multiple time levels, such
as the combined second-order Adams—Bashforth and Crank—
Nicholson algorithms, are the time differencing schemes com-
monly used in the spectral method. Although these schemes
exhibit some desirable features in their own right, their applica-
bility varies widely from problem to problem due to numerical
instability arising from the explicitness. In the wake of such
potential difficulty, we adopt a simple fully implicit scheme
which, besides enhancing stability, enables us to use a relatively
longer time step size. The implicit expressions for Egs. (22)
and (23) become

NT
Lz - e 3 (Lo 2oy

Ar =0 A\ M= i
‘ y I ..
nf- - n(i’l + I)Z"’L':l - ;:Ii] - :;Zr = E ;xi' (25)
LZHI — 4d g (Gm + 2 G
At ”‘ * =0 u 1 + gk M
“{+|ﬁn(”+ D) oy :L";
Zﬂf (] + 5‘)2 ZnA A.r an! (26)

where Ar is the time increment and the superscript ¢ pertains
to the time level.

Due to the nonlinear nature of Egs. (25) and (26), it is
inevitable that an iterative solution scheme be used. By repre-
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senting the current time level, i + 1, as a variable without a
superscript and assigning the superscript a1 as the iteration
number at the given time level, Eqgs. (25) and (26) can be
recast as

I ) e il (4 a2 2 “(I))
- _‘5!':*' —e =i, '_16 N — G
A! k [g 7 Al n 13

=

1 _.
Zitt = nin + 1} 20 ] S AIZ:" (27)
mT] 4(1) NET“ G‘h + 2 G‘:”
A ni v ¢ 1 + §A ki
Tt | "(” + ]) w1 = ] i
_::i -5 Z}f . neT 28
/ (1 T g}\) k Af 3 ( )

Equations (27) and (28) are solved iteratively with updated
flow information until convergence criteria are rcached. The
criferia for convergence are prescribed as

Isz—l

”
it

|23

-7 =g Ya,k

29
Yok, 29

~Znl=e

where g is a prescribed tolerance. £ = 107 is used throughout
this work.
3.4, Influence Muatrix Technigue

The influence matrix technique is used to decompose the
temperature as a linear combination of a set of auxiltary func-

()= (8) 2 (5) 2 (a)

This technique has been used in a previous study [2] for
decomposing the stream function and vorticity.

The expansion functions ¢, and £, are the solutions of the
following supplementary problems:

| ES/4 0 2.

(30

T T
(3
iy —nln+ 1) fu] =0
1 . Bl ( il 2 ,“,) o n(n + 1) 1y .
Egu—-’-l(bx [;:} .Gn + | +&Gu Sui— ar &) éu
(32)

The boundary conditions which go along with the Egs. (31)
and {(32) are
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Lin=1=1

Lig=n=1

Gn=-1=0 (33)
4l

= :0

del,_

In order to meet all the requirements as specified in the
original equations, the remaining auxiliary functions must be
the solutions of the nonhomogeneous problems, the governing
equations for ¢, and Zy; ie.,

i - “(4 ~it 2~m)
ey — o [ S =G - =6
AIQM e e ni 1] - ki

1
g — n(n + 1)§(u:| =48+ E o (34)
_l_g, _ 4(1) § 6,[2) + 2 G:i)
Ar o™ eV 1+
s matly. 1.
Lo — TEYAL (JA:| A, Cor- (35)

Equations (34} and (35) are subjected to a homogeneous bound-
ary condition which can be written as

Gn=1 =0
Lie=N1H=0
Gn=-1=0} (36)
ddy
=0
d'f &==1 ¥,

After solving for the Eqgs. (32)—(36), it is necessary to calcu-
late the decomposing coefficients 8, and 3, in order to obtain
the desired temperatures. These coefficients are determined by
satisfying the heat flux and temperature continuity conditions
at the sphere surface. The boundary conditton in Eqgs. (12) and
(13) leads to the following linear equations for the decomposing
coefficients 3, and B.:

Gy iy /
BI':Blz _F(L(ifL+q)“_€i_(—))/
N n i £ (37
(J_d§(1)+_ d&(n)
M= dn “odE )

For the case tn which radiation heat transfer is not negligible,
Egs. (15) and (13) reduce to
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FIG. 2. Comparison of sieady state drag coefficients.

e | L A8 ddD)
NI — (1 — ®) B [nw i + @, 7z
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P e 0 38
B T dE (38)
B = B..

Equation {38} is a nonlinear boundary condition which can be
solved by using Newton’s iterative scheme.

4. COMPARISONS WITH PREYVIOUS RESULTS

In the following, more efforts to verify our numerical scheme
have been directed 1o compare physical parameters calculated
from the flow and temperature fields. Drag coefficients are
calculated and compared with previous works as a means of
verifying our approach. Results obtained in this study are com-
pared with those of Dennis and Walker |5] for solid sphere cal-
culations.

The drag coefficient C; is defined as

D

-2 3
TpULRY (39)

Ce

where D is the drag force and p is the fiuid density. The drag
coetficient is composed of two parts, ie., friction (D) and
pressure (D) drags:

Dy= —4mpU.R || e sin’ 66

(40)

i

D, = —a&* [ pysin2 b0

wq and py are the vorticity and pressure on the surface of the
sphere. The steady state values of drag coefficients are com-
pared in Fig. 2 with varying =n. values. In general, present
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results are in excellent agreement with previous works within
0.5% error ranges.

Another comparison for the heat transfer calcularion is given
to Nusselt number calculstions. The mean Nusselt number can
be calculated as

Nu, = —j” 2 ("—Z— sin 040, @1
=0

Ei:';; an

a constant sphere surface lemperature boundary condition is
used in order to make the results comparable with those obtained
by Dennis et af. [7]. The Nusselt numbers are compared in Fig.
3 and are in good agreement. In all cases tested, the steady
state calculations of both Nusselt number and drag coefficient
compared the present model favorably with the previously pub-
lished results.

5. RESULTS AND DISCUSSION

The flow apd temperature fields at different time frames
within and outside the solid sphere for the cases with Pr =
(.73 and Re = [}, 50, and 100 are shown in Figs. 4, 5. and
6, respectively. In the early stage, conduction is the dominant
heat transfer mode, so the calculated isotherms show a nearly
spherical shape for all Reynolds numbers considered (see Figs.
4a, 5a, and 6a. As time elapses, convection heat transfer be-
comes more influential so that the heat transter is governed by
both conduction and convection. The resulting isotherms show
that the thermally affected zones are shifted toward the down-
stream direction of the flow. For the high Reynolds number
cases, i.e., Figs. 5 and 6, the recirculation zones are developed
behind the sphere at 3 units of dimensionless time. Because

5.¢ J

= +  Dennis et al |7}
-E 454 % Present result 1, =3.0
= + Presentresult n,=4.9
.4
= *
5 104
E|
z ]
£ a5+
s "
o ]
F 20
>
o
g 254
w

{ =

¥
2.0 . —_ . . —_ ,
o 5 10 15 20
Reynolds Number
FIG. 3. Comparison of stcady siate Nusselt number.
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a

FIG. 4 Sweamiines (dashled line) and isotherms {solid ling) Tor a solid
sphere with Re = 10 and Pr = 0.73 at(a) r = 1.0, (b)r = 3.0. (c) 1 = 5.0,

of the recirculation zones where the velocities are small, the
resulting isotherms near the sphere show a plateau around the
area. This effect becomes stronger as time passes (see Figs. 5¢
and 6¢). Itis interesting to note that for high Reynolds number
cases steeper temperature gradients develop near the surface
than those for low Reynolds number cases. This is because in
high Reynolds number cases, the resulting Peclet number is
high for a fixed Prandtl number. Thus the temperature profile
near the trailing edge of the sphere shows the pattern of high
Peclet number cases (Pe = Re Pr). As expected, in the low
Reynolds number cases the thermally affected zone stretches
more in the direction perpendicular to the flow direction than
it does in the high Reynolds number cases.

The accuracy of the quasi-steady assumption, ie.. the as-
sumption that uses the steady state flow field and solves transient
encrgy equations for the temperature field. is tested by checking
the Nusselt number values with the fully transient solution

FIG. 5.
sphere with Re = 50 and Pr = 073 at(a} ¢ = 1.0, (b) t = 3.0, (¢) r = 5.0.

Streamiines (dashed line) and isotherms (solid line) for a sofid

FIG. 6. Streamlines {dashed line) and isotherms (sohd line) for a solid
sphere with Re = Sand Pr = 0.73 at(a) r = 1.0, (h) + = 3.0, (¢) 1 = 5.0,

approach in both flow and temperature fields. Figure 7 shows
the degree of underprediction using quasi-steady assumption
as compared to the fully transient soiution. The error is defined
as the percentage of the Nusselt number difference to the fully
transient Nusselt number. The steady-state flow field is obtained
after 20 units of dimensionless time has elapsed. The same
energy conservation equation is solved for both the quasi-steady
and the fully transient approaches. It is found that the Nusselt
number obtained by the fully transient approach gives higher
values than those obtained by quasi-steady assumption. This
is because in the early time periods of the fully transient situa-
tion the momentum boundary layer near the sphere surface is
not developed, resulting in steeper velocity and temperature

10
//’—.—-._.“"'\\
g ~
8 ; N
P \
A e ™
.g e ..-‘“-. \\
= 6 / ke . s
= s N
g s N
a ;g A
» LY
o ', RN
- " = \
£ 44 i R
- G “\
/
® /
7 E)
2 f’ Re =10
--------- Re =150
L s Re = 100
0 — 3 T — T
0.0 0.5 1.0 1.5 2.0

Dimensionless Time

FIG. 7. Percent underprediction of quasi-steady results for the transient
Nusselt number.
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FIG. 8. Transient Nusselt number for different values of &, for (a) Re =
50 and {b) Re = 100.

gradients than those calculated using the quasi-steady assump-
tion at the same time scale. The development of thermal and
momentum boundary layers near the sphere surface becomes
significant as time elapses so that the steep gradients smear out
over the external fields, which results in a small discrepancy
for these two different cases. The quasi-steady analyses per-
formed in this study for different Peclet numbers give results
similar to those of Abramzon and Borde [9]. It s also interesting
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that, as the Reynolds number increases, the discrepancy be-
tween quasi-steady and fully transient calculations becomes
larger.

The results of using the radiation heat flux boundary are
shown in Fig. 8. Pr = (.73 is used for the both the Re = 50
(Fig. 8a) and the Re = 100 (Fig. 8b) cases. These curves
indicate that the heat transfer increases as the N, increases. This
is expected because the strong surface radiation results in a
higher heat flux from the sphere surface [10].

6. CONCLUSIONS

In this study, a Chebyshev-Legendre spectral method is
successfully adopted for a solution scheme of the heat transfer
problem from a solid sphere with linear and nonlinear boundary
conditions at the sphere surface. Presented results show cases
for the Reynolds number up to 100. Even though the present
numerical schemes are applicable for higher Reynolds number
cases than presented, the results for the higher Reynolds number
cases are not studied in this work because of the excessive
memory requirements for those cases.

The nonlinear boundary condition arising from the radiation
heat transfer 15 treated successfully by using Newton’s iterative
scheme. It is found that for u given Prandil number, the under-
prediction of quasi-steady assumption increases as the Reynolds
number increases. The discrepancy between the quasi-steady
and the fully transient treatmenis of the flow fields diminishes
as time elapses.
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